[banner]

Summary and Analysis of Extension Program Evaluation in R

Salvatore S. Mangiafico

Mood’s Median Test for Two-sample Data

Mood’s median test compares the medians of two or more groups.  The test can be conducted with the mood.medtest function in the RVAideMemoire package or with the median_test function in the coin package or with the nonpar package.

 

Appropriate data

•  One-way data with two or more groups

•  Dependent variable is ordinal, interval, or ratio

•  Independent variable is a factor with levels indicating groups

•  Observations between groups are independent.  That is, not paired or repeated measures data

 

Hypotheses

•  Null hypothesis:  The medians of the populations from which the groups were sampled are equal.

•  Alternative hypothesis (two-sided): The medians of the populations from which the groups were sampled are not equal.

 

Interpretation

Significant results can be reported as “The median value of group A was significantly different from group B.”

 

Packages used in this chapter

 

The packages used in this chapter include:

•  RVAideMemoire

•  coin

•  nonpar

•  FSA

•  rcompanion

 

The following commands will install these packages if they are not already installed:


if(!require(RVAideMemoire)){install.packages("RVAideMemoire")}
if(!require(coin)){install.packages("coin")}
if(!require(nonpar)){install.packages("nonpar")}
if(!require(FSA)){install.packages("FSA")}
if(!require(rcompanion)){install.packages("rcompanion")}


Mood’s median test example

 

This example uses the formula notation indicating that Likert is the dependent variable and Speaker is the independent variable.  The data= option indicates the data frame that contains the variables.  For the meaning of other options, see ?mood.medtest or the documentation for the employed function.

 

For appropriate plots and summary statistics, see the Two-sample Mann–Whitney U Test chapter.

 

Data = read.table(header=TRUE, stringsAsFactors=TRUE, text="

 Speaker  Likert
 Pooh      3
 Pooh      5
 Pooh      4
 Pooh      4
 Pooh      4
 Pooh      4
 Pooh      4
 Pooh      4
 Pooh      5
 Pooh      5
 Piglet    2
 Piglet    4
 Piglet    2
 Piglet    2
 Piglet    1
 Piglet    2
 Piglet    3
 Piglet    2
 Piglet    2
 Piglet    3
")


###  Check the data frame

library(psych)

headTail(Data)

str(Data)

summary(Data)

 

RVAideMemoire package


library(RVAideMemoire)

mood.medtest(Likert ~ Speaker,
             data  = Data,
             exact = FALSE)


Mood's median test

X-squared = 9.8, df = 1, p-value = 0.001745


Coin package


### Median test

library(coin)

median_test(Likert ~ Speaker,
            data = Data)


Asymptotic Two-Sample Brown-Mood Median Test

Z = -3.4871, p-value = 0.0004883


### Exact median test

median_test(Likert ~ Speaker,
             data = Data,
             distribution="exact")


Exact Two-Sample Brown-Mood Median Test

Z = -3.4871, p-value = 0.001093


### Median test by Monte Carlo simulation

library(coin)

median_test(Likert ~ Speaker,
            data = Data,
            distribution = approximate(nresample = 10000))


Approximative Two-Sample Brown-Mood Median Test

Z = -3.4871, p-value = 0.0011


nonpar package


X = Data$Likert[Data$Speaker=="Pooh"]

Y = Data$Likert[Data$Speaker=="Piglet"]

library(nonpar)

mediantest(x = X, y = Y, exact=TRUE)


Exact Median Test

The p-value is  0.0010825088224469


Effect size measurements

A simple effect size measurement for Mood’s median test is is to compare the medians of the groups.

 

In addition, the whole 5-number summary could be used, including the minimum, 1st quartile, median, 3rd quartile, and the maximum.

 

library(FSA)

Summarize(Likert ~ Speaker, data=Data)

 
  Speaker  n mean        sd min Q1 median   Q3 max
1  Piglet 10  2.3 0.8232726   1  2      2 2.75   4
2    Pooh 10  4.2 0.6324555   3  4      4 4.75   5


Examining the medians and confidence intervals would be a somewhat different approach.  Here, be cautious that confidence intervals by bootstrap may not be appropriate for the median for ordinal data with may ties, such as with Likert item data, or with small samples.


library(rcompanion)

groupwiseMedian(Likert ~ Speaker, data=Data, bca=FALSE, perc=TRUE)


  Speaker  n Median Conf.level Percentile.lower Percentile.upper
1  Piglet 10      2       0.95                2                3
2    Pooh 10      4       0.95                4                5

   ### Note that confidence intervals by bootstrap may vary.


In addition, looking at a statistic of stochastic dominance, like Vargha and Delaney’s A, may be useful in this case.


library(rcompanion)

vda(Likert ~ Speaker, data=Data, verbose=TRUE)


          Statistic Value
1 Proportion Ya > Yb  0.01
2 Proportion Ya < Yb  0.91
3    Proportion ties  0.08

 VDA

0.05

 

Finally, we can divide the difference in medians from two groups by their pooled median absolute deviation (mad).  Unless I find another reference for this statistic, I’ve termed it Mangiafico’s d.  It’s somewhat analogous to a nonparametric version of Cohen’s d.  Note that this statistic assumes the data are at least interval in nature, as so may not be appropriate for Likert item data.


A     = c(1,2,2,2,2,3,4,5)
B     = c(2,3,4,4,4,5,5,5)
Y     = c(A, B)
Group = c(rep("A", length(A)), rep("B", length(B)))
Data2 = data.frame(Group, Y)


library(rcompanion)

mangiaficoD(Y ~ Group, data=Data2, verbose=TRUE)


  Group  Statistic  Value
1     A     Median  2.000
2     B     Median  4.000
3       Difference -2.000
4     A        MAD  0.741
5     B        MAD  1.480
6       Pooled MAD  1.170

    d
-1.71

 

Manual calculation


MU  = median(Data$Likert)

A1  = sum(Data$Likert[Data$Speaker=="Pooh"]   <  MU)
B1  = sum(Data$Likert[Data$Speaker=="Piglet"] <  MU)
A2  = sum(Data$Likert[Data$Speaker=="Pooh"]   >= MU)
B2  = sum(Data$Likert[Data$Speaker=="Piglet"] >= MU)

Matrix = matrix(c(A1, B1, A2, B2), byrow=FALSE, ncol=2)

rownames(Matrix) = c("Pooh", "Piglet")

colnames(Matrix) = c("LessThanMu", "GreaterThanEqualMu")
               
Matrix


        LessThanMu  GreaterThanEqualMu
Pooh             1                   9
Piglet           9                   1


Monte Carlo simulation


chisq.test(Matrix, simulate.p.value=TRUE, B=10000)


Pearson's Chi-squared test with simulated p-value (based on 10000 replicates)

X-squared = 12.8, df = NA, p-value = 0.0009999